Femoral vein ligation increases bone mass in the hindlimb suspended rat.
نویسندگان
چکیده
Bone remodeling in response to changing mechanical demands is well recognized. It has been hypothesized that alterations in interstitial fluid flow (IFF), due to intraosseous pressure changes, influence bone remodeling. The goal of this study was to investigate the role of IFF in bone in the absence of mechanical strain using an in vivo model, the hindlimb suspended rat. Bone remodeling was assessed by direct measurements of weight, dimensions, bone mineral content (BMC) and bone mineral density (BMD) by dual-energy X-ray absorptiometry (DEXA), and trabecular density using peripheral computed tomography (pQCT). Ligation of one femoral vein was performed as a means to alter the IFF within the ipsilateral femur; the contralateral limb was sham-operated as control. Animals were suspended for a period of 19 days. Intramedullary pressure in the venous-ligated femurs increased relative to the sham-operated control femurs (27.8 mmHg vs. 16.4 mmHg, p < 0.05), suggesting venous ligation increased IFF proportional to the pressure drop across the bone. Bone mineral content (BMC), when normalized to body weight, increased significantly in the venous-ligated femurs relative to control limbs (115.9 +/- 15.6% vs. 103.8 +/- 13.2%, p < 0.001); similarly, gains in length (106.2 +/- 2.4% vs. 104.5 +/- 2.1%, p < 0.05) and distal width (110.8 +/- 10.3% vs. 106.2 +/- 8.2%, p < 0.05) for the femurs with venous ligation were significantly greater relative to sham control. Furthermore, trabecular density was significantly higher in the femurs with venous ligation (351 +/- 12 g/cm3 vs. 329 +/- 11 g/cm3, p < 0.05). Daily administration of the cyclooxygenase inhibitor, indomethacin, via drinking water, suppressed the length increases observed for the venous ligated femur, suggesting a role for prostaglandins in IFF-mediated remodeling. These results suggest that IFF can directly influence bone adaptation independent of mechanical loading, and supports the hypothesis that fluid flow modulates bone remodeling.
منابع مشابه
Hindlimb unloading alters ligament healing.
We investigated the hypothesis that hindlimb unloading inhibits healing in fibrous connective tissue such as ligament. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing, and hindlimb-suspended healing. Ambulatory and suspended animals underwent surgical rupture of their medial collateral ligaments, whereas sham surgeries were per...
متن کاملBiomechanics and structural adaptations of the rat femur after hindlimb suspension and treadmill running.
We microscopically and mechanically evaluated the femurs of rats subjected to hindlimb unloading (tail suspension) followed by treadmill training. Female Wistar rats were randomly divided into five groups containing 12-14 rats: control I (118 days old), control II (139 days old), suspended (tail suspension for 28 days), suspended-released (released for 21 days after 28 days of suspension), and ...
متن کاملJump exercise during hindlimb unloading protect against the deterioration of trabecular bone microarchitecture in growing young rats
Three-dimensional femoral trabecular architecture was investigated in tail-suspended young growing rats and the effects of jump exercise during the period of tail-suspension were also examined. Eight-week-old male Wistar rats (n = 24) were randomly assigned to three body weight-matched groups: a tail suspended group (SUS, n = 8); a sedentary control group (CON, n = 8) and rats primed with jump ...
متن کاملCREG1 promotes angiogenesis and neovascularization.
Angiogenesis has long been considered as an important strategy for ischemic injury. It has been reported that cellular repressor of E1A-stimulated genes (CREG1) promotes human umbilical vein endothelial cell (HUVEC) proliferation, migration, and protects endothelial cell (EC) from apoptosis. However, its potential effect on angiogenesis remains undefined. In the present study, we investigated t...
متن کاملEffect of simulated microgravity on vascular contractility.
Microgravity was simulated in Sprague-Dawley (SD) and Wistar (W) rats by using a tail harness to elevate the hindquarters, producing hindlimb unweighting (HU). After 20 days of HU treatment, blood vessels from both HU and control rats were cut into 3-mm rings and mounted in tissue baths for the measurement of isometric contraction. HU treatment decreased the contractile response to 68 mM K+ in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bone
دوره 24 3 شماره
صفحات -
تاریخ انتشار 1999